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Abstract 

This paper contains a quantitative description of the influence of the time factor upon the 
information derivable from measurement. The magnitude of this information is given by 
the amount ofinformation contained in the measuring instrument acting on the measured 
object. This amount of information is determined as a function of measurement duration 
in classical and quantum-mechanica; cases. It is shown, under certain assumptions about 
the measuring process, that the me~.suring instrument contains no information about the 
measured object, when the meo_surement duration becomes zero. 

I. Introduction 

Physical measurement as a basic way of getting knowledge of physical 
objects has some interesting aspects: 

(a) Thetechnical aspect, relating to its technical realisation. 
{b) The theoretical aspect, treating the theoretical problems of measur- 

ing process as, for example, compatible or incompatible measure- 
ment of two observables. 

(c) The informational aspect~ studying ,he measurement as a process 
of informational gaining. 

Aft the above aspects of measurement need to be considered in a complete 
description of the measuring process. Aspect (c), however, in comparison 
with the earlier ones, was theoretically investigated only recently. The 
reason for this was mainly due to the lack of necessary conceptual and 
mathematical formalism, by means of which it might be possible to describe 
this aspec t in a quantitative way. Only when the mathematical apparatus of 
information theory had been built up in its complete form, was it possible 
to turn to such a description. By this time it was necessary, however, to 
introduce new notions into the theory of measurement and to redefine some 
old notions previously used for qualitative description of the information 
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aspect of  the measuring process (e.g. "volume of knowledge', 'information 
quantity," etc.). All these concepts are exactly quantitatively defined only 
within the framework of information theory. 

The main merit of the application of the concepts of information theory 
here consists in the fact that this makes it possible to determine quantita- 
tively the information produced in a measurement, using as a measure the 
amount of  information-contained in the measuring instrument about the 
measured object, or more precisely, about the random variables (observable) 
defined on physical states ofthe measured object. Abstraction from concrete 
malisations of the measuring instruments or the measured objects, respec- 
tively, when determining the informational results of measurements, is 
very useful, since it allows one to concentrate on certain features of the 
informational aspect of  measurement. This abstraction, of course, may not 
k~e suitable for studying other aspects of measurement. The influence of 
time factor on the informational results of a measuring process will be 
dealt with in this paper, by using the so-called entropic model of physical 
measurement (Majernik, 1968), the main ~ ~:.~tures of which are as follows 
(Majernik, 1969a). 

The measuring instrument is considered to be a probability system which 
for a measurement can assume a state M~ (given, for instance, by a pointer 
position) from a set of  a measuring instrument ?,f. On the set M a random 
variable is defined which will be denoted by ~-=. The measured object is 
represented by a probability system assuming one of its physical states, on 
which a physical random variable (observable) T O is defined. During the 
measurement a statistical linkage (Majernik, 1969b) between the random 
variables ~-= and ~'o is established. The magnitude of statisticai liukage 
between the random variable To and r expresses the extent ofthcir statistical 
dependence, and its scalar measure is called information (Majernik, 1969b). 
The so-called information-entropic interaction occurs between both 
systems, creating a suitable statistical linkage between the random variables 
of  the measured object and the measuring instrument. The magnitude of 
this information-entropic interaction is determined by the amount of 
information contained in the random variables T,, about the random 
variable To. The formation of  this statistical linkage represents the necessary 
condition for performing the measuring process. With the information- 
r interaction physical interactions may also be generally linked, 
and these may sometimes interfere with the physical situation of the 
measured object, so that the measuring results may not correspond to the 
actual values of  measured observables. This interference may be often 
quantitatively described, allowing one to find a type of information- 
entropic interaction which, at maximum information gain, distorts the 
physical situation of the measured object in a minimum way. 

One ofthe important factors affecting the magnitude of statistical linkage 
between the measuring instrument and the measured object is the duration 
length ofthe information-entropic interaction, considered to be equal to the 
measurement duration. The time factor will be manifested in a classical 
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physical measurement in another way than at measurement of quantum- 
mechanical objects. While in the first case mainly the discrimination ability 
of  measuring instruments is changed with the length of information- 
entropic interaction, for quantum-mechanical measured objects the spectral 
decomposition of the wave function in respect of the eigenvalues of the 
operator coordinated to the measured observable during measurement is 
relevant. 

Now, recall some basic concepts of information theory. In information 
theory, the amount ofinformation (i.e. the magnitude ofstatistical linkage) 
is defined by means oftbe general integral (Kolmogoroff, 1957) 

f f P=,< xdy)log <l.l) 
x r rxl, ax)r~l,a)') 

where X and Y are sets of values of the random variables .~ and f respec- 
tively, on which the elements of the probability distributions, 

e.(x,)  = P(x, ~ X) 

e,0,,) = e ( y ,  E r )  
are given,  and 

represents the elements of the joint probability distribution on the set of all 
ordered couples z o = (x.y~), x~ e X, yj  ~ Y. When the probability distribu- 
tions are absolutely continuous,i they can also be expressed by means of 
fUnctiohs of probability density p(x), q(y) and p(x,y). In this case, the 
general integral (l . l)  turns out to be a Riemann one, having the form 

f f 0.2) 
F2[ 

if,~ or.F assume only discrete values, x~, x2 . . . . .  x., or y~, Y2 . . . . .  y., with the 
probability distributions being 

~ .  ~ [P(xl), P(xz) . . . . .  P(x.)] and P, = [P(Y,), P(Y2) . . . . .  e(y.)] 

then from equation (1.1) 

I07,.~) = ~ ~ P(x"yj)l~ (1.3) 

where P(x~,yj) is the probability that the random variables :~ and 
simultaneously assume the values x~ and yj respectively. The statistical 
finkage is mathematically expressed by means of an ensemble of conditional 
probabilities forming the transfer matrix R, defined as (Frey, 1963) 

R,=(~,(1) "'" r,(n) t 

~r . ( l )  "-" r.(n)/ 
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where rj(k) is the conditional probability that the random variable .~ 
assumes its kth value, if the random variable .~ takes on its jth value. 
Using the relation between probability distributions P(xj,yt) and the 
conditional probability distribution rj(k), the expression (1.3) may be 
rewritten in the form 

I(J?"V) = ~ ~ P(x~)ra(k)l~ "'~'LrJ, 
i $ 

Similarly, the integral (!.2) takes the form 

l(~.,)= fz fr P(X)r.(y)logrq~) dx dy (l.3a) 

with 

 gy) = f v(x) dx 
Jr 

where G(Y) is the density function for conditional probabilities (transfer 
function). 

By information-entropic interaction of the measurement the aim is to 
create an optimal statistical linkage between the measurir.g instrument and 
measured object. This intention is, however; necessarily linked with the 
fact that when one is creating a statistical linkage between ~,, and %, the 
probability distribution on the set of physical states forming its definition 
set is generally changing. This change of probability distribution mostly 
causes a change of the total physical situation of the measured object. 
Since the aim of a measurement is to find the actual values of the physical 
quantities of the original measured object, this change is most undesirable. 
Hence, we havethe following situation. If the measurement is to be possible 
at all, a statistical linkage between the random variables ~-,, and To must be 
carried out. On the other hand, however, the formation of such a statistical 
linkage reacts upon the original physical situation of the measured object, 
changing its measured data. In the optimal measurement case one obtains 
the maximum information for the minimum change of measured object. 
From a set of real physical measuring procedures it is possible to sort out 
those which are able to form the required optimum statistical linkage 
between the variables ~-,, and To. To describe the influence of a measuring 
instrument on the physical situation of a measured object is, to a certain 
extent, possible, due to the properties of the physical carrier of the informa- 
tion-entropic interaction between the measuring instrument and the object 
being measured. 

The topics dealt with in subsequent sections will include a theoretical 
investigation o f  the-influence of measurement duration upon the magnitude 
of statistical linkage (information) between the measuring instrument and 
measured object, with regard to the physical nature of the physical carrier 
of information--entropic interaction. 
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2. Ttur Character of lnformation-Entropic Interaction 
,~t~ociated with Classical Measurements 

We ~ understand as a classical measurement, a measurement taking 
bet~.'~n a measuring instrument and measured object for physical 

~ a n s l a r g e  enough to be described by laws ofclassical physics. A classical 
measta:mgins~ment generally has a pointer as the output, and this pointer, 
after the m~suriag process, can be situated in different positions, forming 
in this ~aya  metric scale 0afanzagl, ! 959). From the set of pointer positions 
of  the measuring instrument, the random variable -r, is defined. The values 
of  the random variable ~-, are given by the scale values of a measuring 
instrument coordinated to its pointer positions. The pointer of a measuring 
imtrum~mt also becomes an indicator of the physical state of this instrument, 
which it r~aches because of the information-entropic interaction with the 
measured object. In principle, classical measuring instruments may be 
di~ide~ u~ into two groups: 

(1) Phil, ca! measuring instruments which come immediately into contact 
with the ph)~ical measured object. For instance, thermometers, some 
measuring instruments of electrostatical quantities, and so on. 

(2) Ph~x_i~,~ measuring instruments whose contacts with the measured 
objcc:.s are intermediated by a sequence of certain signals, the sources of 
which represent directly the measured objects or, alternatively, interact for 
a time ~ith the measured objects. 

Ishan treat onIy the first group of physical measuring instruments which 
can be, in principle, simulated by the following model. Let the measured 
object 2ssume the/th state of physical states Sl, $2 . . . . .  S, with a certain 
probability Pl- "[he values/zl,/~2 . . . . .  /~, of the measured physical quantity 
are ~ to the states St, $2 . . . .  , S, according to the scheme: 

�9 s s  

�9 ~ /'t /'2 ~',, 

In ~'hat follows, k t  us assume that the state variable # is related to the 
physical set quantity q according to the following equation (as for instance, 
would be the relationship between temperature and amount ofheaO 

q =.,~./~ (2.1) 

Let the same relation as (2.1) be also valid at the measuring instrument. 
To put this another way, assume that the quantity q forms an completely 
additive set function on a o-algebra of subsets of the set of all measured 
objects coming under consideration. Tbe values of the state variable/~') 
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as well as of the physical set quantity q [see equation (2.1)], can also be 
related to each state of the measuring instrument 

q~,) _- .~(,) p~p) 

The physical carrier of information-entropic interaction between the 
measured object and the measuring instrument is the physical quantity q. 
Let it have the following properties: 

(1) Its total magnitude is conserved, i.e. for the system comprising 
measuring instrument and measured object, the following relation holds 

q = qr + qt,~ = const. 

(2) Between the measured object and the measuring instrument, when in 
contact, a certain amount of tbe quantity q can transfer. Assume that the 
amount ,dq passing from the measured object to the measuring instrument, 
and vice versa, is directly proportional to the difference between the state 
quantities and the duration of the information-entropic interaction T: 

dq = ~(p(*) -ptP)). T, ~ - const. 

Let the accuracy of the measuring instrument be ,dp~) and let the measur- 
ing instrument have at the beginning of each measurement a position 
corresponding to the value of the state quantity r O. Further, the 
measured object should be sufficiently large that its state variable is only 
slightly Changed as q changes. Under these conditions, the time differential 
of  the state variable/~(~ is given by the equation 

dP-~ = ~(pt*) - p~,)) 
d t  

whose solution has the form 

p("  = pt~ [1 - exp (-~T)] 

The discrimination ability ,4/~t~,) of the measuring instrument is projected 
onto the measured object according to the relation 

a/ t~ (2.2) dpco)  ffi p(20) _ p [ , )  _ l _ exp(-AT) 

so that the number of different states of the variable pco) for the measured 
object, if the total number (or extent) is given by R, is given by the equation 

R . [ l  - ( 2 . 2 a )  n = A p u ,  ) 

The number n represents an important characteristic of  classical measure- 
ment, since it enables one to determine the magnitude of the statistical 
linkage between the measured object and the measuring instrument. 
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Physical states of the measured object have generally different prob- 
abilities. Next we shall, for the sake of simplicity, assume their probability 
distribution to be uniform and to have probability 

1 P4----'- 
tl 

In Otis case, the information can be determined by means of the simple 
relation 

10"-, ~'e) = Iogn 
hence,  

I0"., ~o) = log R[I - exp(-AT)] (2.3) 
A p "  

When discussing this relation, two circumstances must be pointed out: 
(i) Information I0".,~'o) is a positive quantity, according to its defini- 

tion. Therefore, the relation (2.3) has its meaning only for a larger measure- 
ment duration than T~, as given by the equation 

R [ I - e x p ( - ~ T : ) ]  1 
ds 

(hi In the asymptotic case, for T-+ ~, we get 10".,'r0) = log(R/Ar~),  
whereby the informatioa I0"., T0) assumes its maximum value. 

As a measure for change of the physical situation of the measured object 
o n e  may take the mean value ofthe quantity ZJq passing from the measured 
object to the measuring instrument during a measurement, hence 

dq ffi .,Y't'~ 2 A T ~'~ 

Considering (2.2a), one has 

Aq _~ .,~f,oo R. [1 - exp(-)iT)] 
2 

For the optimal measurement, the information I0-,, ~'0) should be as large 
as possible, with Aq as small as possible, that is, the function 

XO'., ro) 
f : ~  dq  

should get is maximum value. Since f:  is given only as a function of the 
variable T, it is possible to find its extreme values, and so to determine the 
quantitative criteria for the optimal measurement. 

Generally, for classical measurement it is necessary to consider the 
distribution of deviations from the correct values whose magnitudes are 
being determined by the Gaussian probability distribution. Since the 
discrimination ability Ap ~~ is time-dependent, the dispersion a of the 
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deviations from correct values also has this property. Supposing a linear 
relation between zl/~ r176 and o, one obtains 

o(7") = k.,dp/e'(T) (2.4) 

According to (2.2), the transfer function between the measured object and 
the measuring instrument takes the form 

1 ,x(y) = ~(~-a. exp {- (Y ~--~x)2 } 

1 - e x p ( - ~ T )  [ ( y -  x)2[l - exp(-~T)]2~ 
expl~ 2no 2 l 

wherey or x is the value ofthe random variable -r.  or % respectively, and 

o0 = lira kzl/x t~ 
lr..~o 

If the function of probability density of the random variable % is denoted 
by the symbolp(x), then the amount of information I(-r=,%), as a function 
of  the duration of  the measurement T, is given, according to equation 
(l.3a), by the expression: 

l(..;.0, T) = f f  x)[l - exp( - ,~T) ]  exp f -  ( y  - x)z[l - e x p  (-'XT)]2~ 

with 

(l -exp( -~T) ]  f (Y- x ) 2 [ l - ~ l  
�9 log expt- 'dxd  

q(y) 

q(y) = fp(x)  [1 - exp(-,~T)] ex p [_ (y - x)Z[l - -  exp (-,~T)121 dx 

The formula (2.5) expresses the required dependence of the magnitude of 
statistical linkage, as well as the density function q(y) of the random variable 
1-, on the measurement duration at the classical measurement. There are 
two special cases of equation (2.5) of importance. Firstly, the case when the 
measurement duration is equal to zero (T = 0). Then 

I0",,; ~'0, T) = 0 

Then the random variable ~',, is notstatistically linked to the measured 
variable ~'0, hence, the measuring instrument does not contain any informa- 
tion about the measured object. Under these conditions, the measuring 
instrument cannot perform its function. When the magnitude of statistical 
linkage between the random variables ~-,, and To is different from zero, the 
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inequality T >  0 must hold. Secondly, consider the case when T= oo. Then 
the expiession (2.5) adopts the form 

1(,.; ,o, T) -- f f {- (Y-  o2J 

qO,) 
with 

i 
= f p(x) ~/(2~)~o "exp {-  (y - x)21 d~r q(Y) x J 

The magnitude of statistical linkage I('rm;~'o) in this case depends mainly 
upon the value of the dispersion c 0. If ~o ~ 0, then q(y) :~ p(x), that is the 
probability distributions of the quantities ~-~, and ~'o are different. If a o = 0, 
then 

r , ( y )  = S (y  - x )  
and 

q(x) = r(x) 
Then, and only then, do the values of the random measured variable % 
unambiguously correlate with the values of the random variable given from 
positions of the measuring instrument ~-~. Under these conditions, an 
ideal classical measurement may occur. If 0 < o and 0 < T <  ~, then the 
information lies in the interval 

0 < 1 0 " . ; ~ ' 0 , T )  < oo 

The determination of the information I0-,,; To, T) is a necessary condition 
for informational aspect of the measurement to be described. Equation (2.5) 
enables one to determine information parameter for each specific case of 
the a priori probability distribution of the physical states of the measured 
object, given by mean s of the density function p(x). 

The coefficient of the informational effectiveness of measurement with 
respect to its duration may be defined in a similar way to (2.4), 

A = i (T.  ;~0, ~ (2.6) 

This gets its maximum value for a finite value of T. At this value of T, the 
optimal measurement with regard to the effectiveness coefficient f2 may be 
performed. 

3. Time Factor for Measurement of  Quantum-mechanical Systems 
Now we shall deal with the problem regarding the size of the statistical 

linkage I0"~,, ~'o) between the random variable ~-,, defined on the position-set 
of  a macro-instrument, and the measured observable defined on the set of 
quantum states of the measured quantum-mechanical system (how much 
information is contained in the variable ~-, about the observable ~ro), if 
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this instrument is at time T in information-entropic interaction with a 
quantum-mechanical measured object. The magnitude of this statistical 
linkage repre~nts a function of the elements of the transfer matrix. For the 
measuring process, these elements are generally dependent on time, and 
thus on the information/0"0,~'.), too. By means of quantum-mechanical 
laws the time-dependence of elements of the transfer matrix R(T) may be 
found, and so also the time dependence of information 1(r T) may be 
searched for. For T-*  Qo we get a stationary measurement case. When the 
duration of measurement is so small that it has a marked influence on the 
magnitude of  information I(7.,r we shall speak about the non- 
stationary measurement case. 

We shall now turn to the problem ofcreation of statistical linkage between 
the measuring instrument and the quantum-mechanical measured object. 
Let the measuring instrument be linked with the measured object at time t 
taken from the interval ( -T /2 ,  T/2) 

t e (-7"/2, r/2> 
The carrier of  information during this time interval is the wave function of 
the quantum-mechanical object, which will be denoted by ~(t,x).  Let the 
measurement be performed by means of a selective measuring instrument 
able to distinguish physical states of the measured micro-object, and so to 
determine its distribution function (in the statistical interpretation of  
quantum-mechanics), or to determine the probability distribution on these 
states (in the probability interpretation of quantum-mechanics). To obtain 
the T-dependent expression for the amount of information, we must deter- 
mine the function of probability density given on the set S of quantum 
states of  the measured object, as well as the transfer function between the 
observable % and the random variable ~-, determined using positions of a 
selective measuring instrument. Let~the space-point where the measuring 
instrument will be situated have its coordinate x', Then the wave function 
~(x ' , t )  in time t ~ ( -T /2 ,T /2)  is the only one source of information on the 
micro-object. During the measuring process a coordination of the actual 
value q of measured obse~',,able to the value being shown on the instrument 
scale is taking place. We shall denote the value shown on the scale corres- 
ponding to the actual value q of the measured observable ~'o by the symbol 
q', and the probability distribution on the set of positions of the measuring 
instrument, given in the time t ~ ( -T /2 ,T /2) ,  by p'(q',x'), where the co- 
ordinate x' is taken as a parameter. The probability distribution of the 
random variable ~-, is generally other than that of the measured observable 
1"o given on the set of  quantum states of the measured object and determined 
by means of  the known relation 

p(q,x') = la(q,x~)l 2 
with 

4 m  

a(q,x') = f L/'(x', t ) . ~ q ,  t,x~)dt 
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where ~(q,t,x) is the eigenfunction (corresponding to eigenvalue q) of  the 
operator O~ belonging to the measured observable ~'0- 

To find the transfer function between the measuring instrument and 
measured object, we take into account the fact that the measuring instru- 
ment interacts with the measured object only in the interval t ~ <-T/2, T/2). 
Hence, tl~ wave function from the side of the measuring instrument 
~(x,t) may be expressed in the form 

~(x, t) = 0 for t ~ (-m,-T/2> 

and t ~ (+~ ,  +T]2) 

i~(x, t) = ~(x, t) for t e (-T/2, +T/2> 

One obtains the transfer function between the elements of a set ofquantum 
states and a set of positions of the measuring instrument by the relation 

where 
r,(q*:x',r) = [b(q ,q ' ,x ' ,  r ) [  2 

+T/2 

= f :i~(x',q,t).q~(x',q',t)dt (3.1) Kq, q',x', r )  
-112 

since the expression [b(q,q',x',T)[ 2 gives the density function of the con- 
ditional probability that the measuring instrument assumes the pointer 
position belonging to the quantum state of the measured object with the 
quantum number q', if the measured object is in a pure quantum state, 
characterised b)' the quantum number q and by the wave eigenfunction 
~(x~ 

The function ofprobability density on the pointer positions of a measuring 
instrument/,(x',q', 7") is determined by the equation: 

p'(x',q', T) = [c(x',q', T)l 2 
where 

t(q' ,x' ,~ ~ f a(q,x).b(q,q',x',T)dq 

By means of the functions b(q~ a(q,x~ and c(q',x',T) it is possible 
to determine the magnit.ude of the statistical linkage between the random 
variable ~-, and the measured observable ~'o. According to equation (l.3a), 
we get 

= f f [a(q, xglL lb(q.q'.x'. T)[L 
I--  Ib(q'q" x', T)[ 2 .,_ ~,~, (3.2) 

..u~ l~q, x,,T)i 2 ,,~,,~ 

Equation O.2) is the required formula for the determination of the 
magnitude of the statistical linkage between the random variable ~-,, and a 



DO v ~ n ~ f s  ~ f K  

general measured observable, if the wave function of the measured micro- 
object is given. 

4. An Example 
To discuss Equation (3.2), take for ~'o a specific physical observable. 

Look for the functions a(q,x'), b(q,q',x',T) and c~q,x',T) in the case where 
the observable To represents the energy of a free particle which is described 
by the wave function ~(x,t). In this case, equation (3.1) takes the form 

+TIZ 

I b(E',E,T, xg= ~(x',t,E).~(x',E',t)dt (4.1) 
-TI2  

where ~(x',t,E) and ~(x',t,E') are the eigenfunctions of a free particle, 
and E is energy of the measured quantum-mechanical object. Taking into 
consideration the fact that here 

r ~t} 

wheref(x',E) is the eigenfunction of the Hamiltonian of a free particle at 
the energy E, one obtains 

T l l  

-1"/2 

2h . [(E-EgTI 
./(x'.E~.~-eSsml ~ J 

Hence, the density function of conditional probability is determined in the 
following way: 

e �9 t 2 r~(E',T,x') 4f(x,E).f(x' ,E)h . 21(E-E3T| 
= ( t -eT-  .sin [ 2h -] (4.2) 

Substituting equation (4.2) into equation (3.2), one obtains 

l(E';E,T, x3= f f  . . . . .  2 4f(x',E).f(x',E)h' ,~..x,,. ~-~-V sin' l(~-~'~ r}" 
f4f(x"E)'f(x"E'):h2"-- --~, z--:-:'- sm 2[ "(E --E') T}] 

. I (E-e)  , 2h "aEaE',j -'~ 
(4.3) 

where 
a(s f. W(x',t).c~E,t, x3dt 

B ~  

and 
. . . .  r - - -  , ,  2f(x',E).f(x'.E')fJsin , (E-  E') T| dE .( 
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Similarly to the classical case the expression (4-3) will be discussed for two 
limiting cases: 

when the duration of  measurement is zero, i.e. T--- 0; 
(h') when the measurement lasts infinitely long, i.e. T=- o~. 

In the first case, for the magnitude of  statistical linkage (information), 
one  has 10".,;E,0) = 0. The valuesof  random variables ~-,, and T o are there- 
fore statistically independent, so that the pointer position of  the measuring 
instrument does not indicate anything about the value of  the measured 
observable. 

In the second case, when T o  0% one obtains 

lira r T) = ~ ( E -  E')  

so  that 
a(E) --- c(E) 

and 

I (E ' ;  E, T) = - f c(E) log c(E) dE + f c(E) ~(E - E g .  log 6(E - E') dE'  

(4.4) 

The second term in equation (4.4) diverges. When c(E) # 8(E), then 

f i m l ( E ' ; E , T )  = o~ 

Under these conditions, the random variable ~-. contains maximum infor- 
mation about the energy of  the free particle and the statistical linkage 
between the measuring instrument and measured object takes its maximum 
value. 
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